Cover image of In Our Time: Science
(277)
Society & Culture
History

In Our Time: Science

Updated 13 days ago

Society & Culture
History
Read more

Scientific principles, theory, and the role of key figures in the advancement of science.

Read more

Scientific principles, theory, and the role of key figures in the advancement of science.

iTunes Ratings

277 Ratings
Average Ratings
235
23
5
6
8

Superb Science Information!

By F U. - Apr 18 2018
Read more
If you’re a naturally curious person this is for you. A truly wonderful program.

Wonderful

By Junko Jones - Jan 26 2016
Read more
Great topics, wonderful host. My favorite science podcast- the perfect binge listen!

iTunes Ratings

277 Ratings
Average Ratings
235
23
5
6
8

Superb Science Information!

By F U. - Apr 18 2018
Read more
If you’re a naturally curious person this is for you. A truly wonderful program.

Wonderful

By Junko Jones - Jan 26 2016
Read more
Great topics, wonderful host. My favorite science podcast- the perfect binge listen!
Cover image of In Our Time: Science

In Our Time: Science

Updated 13 days ago

Read more

Scientific principles, theory, and the role of key figures in the advancement of science.

Rank #1: Black Holes

Podcast cover
Read more
Melvyn Bragg and guests discuss Black Holes. They are the dead collapsed ghosts of massive stars and they have an irresistible pull: their dark swirling, whirling, ever-hungry mass has fascinated thinkers as diverse as Edgar Allen Poe, Stephen Hawking and countless science fiction writers. When their ominous existence was first predicted by the Reverend John Mitchell in a paper to the Royal Society in 1783, nobody really knew what to make of the idea - they couldn’t be seen by any telescope. Although they were suggested by the eighteenth century Marquis de Laplace and their existence was proved on paper by the equations of Einstein’s General Theory of Relativity, it was not until 1970 that Cygnus X 1, the first black hole, was put on the astral map. What causes Black Holes? Do they play a role in the formation of galaxies and what have we learnt of their nature since we have found out where they are?With the Astronomer Royal - 2001 Sir Martin Rees, Professor of Physics and Astronomy at Cambridge University; Jocelyn Bell Burnell, Professor of Physics at The Open University; Professor Martin Ward, director of the X-Ray Astronomy Group at the University of Leicester.
Apr 12 2001
28 mins
Play

Rank #2: The Physics of Time

Podcast cover
Read more
Melvyn Bragg and guests discuss the physics of time. When writing the Principia Mathematica, Isaac Newton declared his hand on most of the big questions in physics. He outlined the nature of space, explained the motions of the planets and conceived the operation of gravity. He also laid down the law on time declaring: “Absolute, true, and mathematical time, of itself and from its own nature, flows equably without relation to anything external.” For Newton time was absolute and set apart from the universe, but with the theories of Albert Einstein time became more complicated; it could be squeezed and distorted and was different in different places.Time is integral to our experience of things but we find it very difficult to think about. It may not even exist and yet seems written into the existence of absolutely everything. With Jim Al-Khalili, Professor of Theoretical Physics and Chair in the Public Engagement in Science at the University of Surrey; Monica Grady, Professor of Planetary and Space Sciences at the Open University and Ian Stewart, Professor of Mathematics at the University of Warwick.
Dec 18 2008
42 mins
Play

Rank #3: Calculus

Podcast cover
Read more
Melvyn Bragg discusses the epic feud between Sir Isaac Newton and Gottfried Leibniz over who invented an astonishingly powerful new mathematical tool - calculus. Both claimed to have conceived it independently, but the argument soon descended into a bitter battle over priority, plagiarism and philosophy. Set against the backdrop of the Hanoverian succession to the English throne and the formation of the Royal Society, the fight pitted England against Europe, geometric notation against algebra. It was fundamental to the grounding of a mathematical system which is one of the keys to the modern world, allowing us to do everything from predicting the pressure building behind a dam to tracking the position of a space shuttle.Melvyn is joined by Simon Schaffer, Professor of History of Science at the University of Cambridge and Fellow of Darwin College; Patricia Fara, Senior Tutor at Clare College, University of Cambridge; and Jackie Stedall, Departmental Lecturer in History of Mathematics at the University of Oxford.
Sep 24 2009
42 mins
Play

Rank #4: Dark Matter

Podcast cover
Read more
Melvyn Bragg and his guests discuss dark matter, the mysterious and invisible substance which is believed to make up most of the Universe. In 1932 the Dutch astronomer Jan Oort noticed that the speed at which galaxies moved was at odds with the amount of material they appeared to contain. He hypothesized that much of this 'missing' matter was simply invisible to telescopes. Today astronomers and particle physicists are still fascinated by the search for dark matter and the question of what it is.

With

Carolin Crawford
Public Astronomer at the Institute of Astronomy, University of Cambridge and Gresham Professor of Astronomy

Carlos Frenk
Ogden Professor of Fundamental Physics and Director of the Institute for Computational Cosmology at the University of Durham

Anne Green
Reader in Physics at the University of Nottingham

Producer: Simon Tillotson.
Mar 12 2015
45 mins
Play

Rank #5: Relativity

Podcast cover
Read more
Melvyn Bragg and his guests discuss Einstein's theories of relativity. Between 1905 and 1917 Albert Einstein formulated a theoretical framework which transformed our understanding of the Universe. The twin theories of Special and General Relativity offered insights into the nature of space, time and gravitation which changed the face of modern science. Relativity resolved apparent contradictions in physics and also predicted several new phenomena, including black holes. It's regarded today as one of the greatest intellectual achievements of the twentieth century, and had an impact far beyond the world of science.

With:

Ruth Gregory
Professor of Mathematics and Physics at Durham University

Martin Rees
Astronomer Royal and Emeritus Professor of Cosmology and Astrophysics at the University of Cambridge

Roger Penrose
Emeritus Rouse Ball Professor of Mathematics at the University of Oxford.
Producer: Thomas Morris.
Jun 06 2013
42 mins
Play

Rank #6: The Proton

Podcast cover
Read more
Melvyn Bragg and guests discuss the discovery and growing understanding of the Proton, formed from three quarks close to the Big Bang and found in the nuclei of all elements. The positive charges they emit means they attract the fundamental particles of negatively charged electrons, an attraction that leads to the creation of atoms which in turn leads to chemistry, biology and life itself. The Sun (in common with other stars) is a fusion engine that turn protons by a series of processes into helium, emitting energy in the process, with about half of the Sun's protons captured so far. Hydrogen atoms, stripped of electrons, are single protons which can be accelerated to smash other nuclei and have applications in proton therapy. Many questions remain, such as why are electrical charges for protons and electrons so perfectly balanced?

With

Frank Close
Professor Emeritus of Physics at the University of Oxford

Helen Heath
Reader in Physics at the University of Bristol

And

Simon Jolly
Lecturer in High Energy Physics at University College London

Producer: Simon Tillotson.
Apr 26 2018
49 mins
Play

Rank #7: Game Theory

Podcast cover
Read more
Melvyn Bragg and his guests discuss game theory, the mathematical study of decision-making. First formulated in the 1940s, the discipline entails devising 'games' to simulate situations of conflict or cooperation. It allows researchers to unravel decision-making strategies, and even to establish why certain types of behaviour emerge. Some of the games studied in game theory have become well known outside academia - they include the Prisoner's Dilemma, an intriguing scenario popularised in novels and films, and which has inspired television game shows. Today game theory is seen as a vital tool in such diverse fields as evolutionary biology, economics, computing and philosophy. With:Ian StewartEmeritus Professor of Mathematics at the University of WarwickAndrew ColmanProfessor of Psychology at the University of LeicesterRichard BradleyProfessor of Philosophy at the London School of Economics and Political Science.Producer: Thomas Morris.
May 10 2012
41 mins
Play

Rank #8: Artificial Intelligence

Podcast cover
Read more
Melvyn Bragg and guests discuss artificial intelligence. Can machines think? It was a question posed by the mathematician and Bletchley Park code breaker Alan Turing and it is a question still being asked today. What is the difference between men and machines and what does it mean to be human? And if we can answer that question, is it possible to build a computer that can imitate the human mind? There are those who have always had robust answers to the questions that those who seek to create artificial intelligence have posed. In 1949 the eminent neurosurgeon, Professor Geoffrey Jefferson argued that the mechanical mind could never rival a human intelligence because it could never be conscious of what it did: "Not until a machine can write a sonnet or compose a concerto because of thoughts and emotions felt", he declared "and not by the chance fall of symbols, could we agree that machine equals brain - that is, not only write it but know that it had written it." Yet the quest rolled on for machines that were bigger and better at processing symbols and calculating infinite permutations. Who were the early pioneers of artificial intelligence and what drove them to imitate the operations of the human mind? Is intelligence the defining characteristic of humanity? And how has the quest for artificial intelligence been driven by warfare and conflict in the twentieth century? With Jon Agar, Lecturer in the History and Philosophy of Science, University of Cambridge; Alison Adam, Professor of Information Systems, Salford University; Igor Aleksander, Professor of Neural Systems Engineering at Imperial College, University of London.
Dec 08 2005
40 mins
Play

Rank #9: The Speed of Light

Podcast cover
Read more
Melvyn Bragg and guests discuss the speed of light. Scientists and thinkers have been fascinated with the speed of light for millennia. Aristotle wrongly contended that the speed of light was infinite, but it was the 17th Century before serious attempts were made to measure its actual velocity – we now know that it’s 186,000 miles per second. Then in 1905 Einstein’s Special Theory of Relativity predicted that nothing can travel faster than the speed of light. This then has dramatic effects on the nature of space and time. It’s been thought the speed of light is a constant in Nature, a kind of cosmic speed limit, now the scientists aren’t so sure. With John Barrow, Professor of Mathematical Sciences and Gresham Professor of Astronomy at Cambridge University; Iwan Morus, Senior Lecturer in the History of Science at The University of Wales, Aberystwyth; Jocelyn Bell Burnell, Visiting Professor of Astrophysics at Oxford University.
Nov 30 2006
42 mins
Play

Rank #10: Infinity

Podcast cover
Read more
Melvyn Bragg and guests discuss the nature and existence of mathematical infinity. Jonathan Swift encapsulated the counter-intuitive character of infinity with insouciant style:“So, naturalists observe, a fleaHath smaller fleas on him that preyAnd these hath smaller fleas to bite ‘emAnd so proceed ad infinitum.”Alas, the developing utility mathematicians put to the idea of infinity did not find the English philosopher Thomas Hobbes quite so relaxed. When confronted with a diagram depicting an infinite solid whose volume was finite, he wrote, “To understand this for sense, it is not required that a man should be a geometrician or logician, but that he should be mad”. Yet philosophers and mathematicians have continued to grapple with the unending, and it is a core concept in modern maths.So, what is mathematical infinity? Are some infinities bigger than others? And does infinity exist in nature?With Ian Stewart, Professor of Mathematics at the University of Warwick; Robert Kaplan, co-founder of The Math Circle at Harvard University and author of The Art of the Infinite: Our Lost Language of Numbers; Sarah Rees, Reader in Pure Mathematics at the University of Newcastle.
Oct 23 2003
42 mins
Play

Rank #11: Kinetic Theory

Podcast cover
Read more
Melvyn Bragg and guests discuss how scientists sought to understand the properties of gases and the relationship between pressure and volume, and what that search unlocked. Newton theorised that there were static particles in gases that pushed against each other all the harder when volume decreased, hence the increase in pressure. Those who argued that molecules moved, and hit each other, were discredited until James Maxwell and Ludwig Boltzmann used statistics to support this kinetic theory. Ideas about atoms developed in tandem with this, and it came as a surprise to scientists in C20th that the molecules underpinning the theory actually existed and were not simply thought experiments.

The image above is of Ludwig Boltzmann from a lithograph by Rudolf Fenzl, 1898

With

Steven Bramwell
Professor of Physics at University College London

Isobel Falconer
Reader in History of Mathematics at the University of St Andrews

and

Ted Forgan
Emeritus Professor of Physics at the University of Birmingham

Producer: Simon Tillotson
May 23 2019
51 mins
Play

Rank #12: Science's Revelations

Podcast cover
Read more
Melvyn Bragg and guests discuss whether the mass of scientific understanding and knowledge we have accumulated has destroyed our sense of poetic wonder at the world. Has our sense of awe at how the world works obscured our desire to know why it works the way it does? With Richard Dawkins evolutionary biologist, reader in Zoology and Fellow of New College, Oxford, Charles Simonyi Chair of Public Understanding of Science, Oxford University and author of Unweaving The Rainbow: Science, Delusion and The Appetite For Wonder; Ian McEwan, novelist, and author of the Booker prize winning novel Amsterdam.
Oct 29 1998
28 mins
Play

Rank #13: The Multiverse

Podcast cover
Read more
Melvyn Bragg and guests will be leaving the studio, the planet and indeed, the universe to take a tour of the Multiverse. If you look up the word ‘universe’ in the Oxford English Dictionary you will find the following definition: “The whole of created or existing things regarded collectively; all things (including the earth, the heavens, and all the phenomena of space) considered as constituting a systematic whole.” That sounds fairly comprehensive as a description of everything, but for an increasing number of physicists and cosmologists the universe is not enough. They talk of a multiverse – literally many universes – to explain aspects of their theory, the character of the universe and the riddle of our existence within it. Indeed, compared to the scope and complexity of the multiverse, the whole of our known reality may be as a speck of sand upon a beach.The idea of a multiverse is still controversial, some argue that it isn’t even science, because it is based on an idea that we may never be able to prove or even see. But what might a multiverse be like, why are physicists and cosmologists increasingly interested in it and is it really scientific to discuss the existence of universes we may never know anything With Martin Rees, President of the Royal Society and Professor of Cosmology and Astrophysics at the University of Cambridge; Fay Dowker, Reader in Theoretical Physics at Imperial College; Bernard Carr, Professor of Mathematics and Astronomy at Queen Mary, University of London
Feb 21 2008
41 mins
Play

Rank #14: Mathematics

Podcast cover
Read more
Melvyn Bragg and guests discuss the way perceptions of the importance of mathematics have fluctuated in the 20th century, the nature of mathematical ability, and what mathematics can show us about how life began, and how it might continue. Galileo wrote “this grand book the universe… is written in the language of mathematics”. It was said before Galileo and has been said since and in the last decades of the 20th century it is being said again, most emphatically. How important is maths in relation to other sciences at the end of the twentieth century - will it ever be made redundant, or is it increasingly crucial to our understanding of the world and ourselves? What insight can it give us into the origins of life, and the functioning of our brains, and what does it mean to say that maths has become more ‘visual’?With Ian Stewart, Professor of Mathematics and Gresham Professor of Geometry, University of Warwick; Brian Butterworth, Professor of Cognitive Neuroscience, University College, London.
May 06 1999
28 mins
Play

Rank #15: Evolution

Podcast cover
Read more
Melvyn Bragg examines the future of gene therapy and advances in evolutionary biology. Are we continuing to evolve? If so, what are the signs and if not, why not? And those apes, so very very near us in genetic kinship, why are they so far away in so much else, and will they ever evolve? And is evolution necessarily progression? If so, does our apparent lack of evolution mean lack of progress? Also on the evolutionary front, could electronic devices discover the means of self-replication, and what will that mean for us? The march of the life sciences after the discovery of DNA accelerates by the year but what are the implications?With Professor John Maynard Smith evolutionary biological theorist and Emeritus Professor of Biology at the University of Sussex; Colin Tudge, writer, journalist and Research Fellow at the Centre for Philosophy.
Apr 15 1999
28 mins
Play

Rank #16: Climate Change

Podcast cover
Read more
Melvyn Bragg discusses climate change. In 1999 the weather gave the planet’s occupants a terrible beating: 16,000 people lost their lives as a result of storms. Some 15 million people were left homeless and 10,000 died when the world’s worst cyclone swept across eastern India. Hurricane Floyd wreaked 4.3 billion pounds worth of damage in the United States, Typhoon Bart hit Japan and Typhoon York hit Hong Kong and Macau. Western Europe is unused to hurricane force winds, but since Christmas 80 people have died in France as a result of storms. And in Venezuela floods and mud slides are continuing to cause devastation on a massive scale.The climate has become political but is the science, supposedly underpinning apocalyptic and apposite millennial claims of doom, really water-tight? It might seem that the effects of global warming are already upon us, but are they - and if so how can we really hope to stop them? With Sir John Houghton, Co-Chair of the Inter-Governmental Panel on Climate Change - the United Nations’ global warming science committee; George Monbiot, environmentalist, journalist and Visiting Professor, Department of Philosophy, Bristol University.
Jan 06 2000
27 mins
Play

Rank #17: The Brain and Consciousness

Podcast cover
Read more
Melvyn Bragg and guests discuss how our increased knowledge of the functioning of the brain and the mechanisms of memory in the 20th century has changed our feelings about our own natures, and our approach to the behaviour and treatment of others.Many questions have been thrown up this century by our growing knowledge about how the brain and the mind function. How easy is it to establish the relationship between the two, and what light can this relationship throw on our understanding of our own and others natures? With Steven Rose, Professor of Biology and Director of the Brain and Behaviour Research Group, Open University, Dan Robinson, Distinguished Research Professor, Georgetown University and visiting lecturer in Philosophy and Senior Member of Linacre College, Oxford University.
Nov 19 1998
27 mins
Play

Rank #18: The Age of the Universe

Podcast cover
Read more
Melvyn Bragg and his guests discuss the age of the Universe.Since the 18th century, when scientists first realised that the Universe had existed for more than a few thousand years, cosmologists have debated its likely age. The discovery that the Universe was expanding allowed the first informed estimates of its age to be made by the great astronomer Edwin Hubble in the early decades of the twentieth century. Hubble's estimate of the rate at which the Universe is expanding, the so-called Hubble Constant, has been progressively improved. Today cosmologists have a variety of other methods for ageing the Universe, most recently the detailed measurements of cosmic microwave background radiation - the afterglow of the Big Bang - made in the last decade. And all these methods seem to agree on one thing: the Universe has existed for around 13.75 billion years.With:Martin ReesAstronomer Royal and Emeritus Professor of Cosmology and Astrophysics at the University of CambridgeCarolin CrawfordMember of the Institute of Astronomy and Fellow of Emmanuel College at the University of CambridgeCarlos FrenkDirector of the Institute for Computational Cosmology at the University of Durham.Producer: Thomas Morris.
Mar 03 2011
42 mins
Play

Rank #19: The Universe's Origins

Podcast cover
Read more
Melvyn Bragg examines the history of what we know about the origins of the universe. Some four hundred years ago in Rome, one Giordano Bruno was burnt at the stake for his belief in other inhabited worlds - it’s a possibility which has fascinated scientists, writers, artists and the general public for centuries - and any consideration of the origins of life and matter on other planets, and indeed this one, inevitably raises huge questions. Do other worlds exist? How did our planet come into existence? How can we know anything at all about the origins of life and matter so many billions of years ago, and how has our thinking on these - amongst the deepest of questions - changed over the 20th century? Are we any closer to knowing whether other worlds exist and how our own planet came into being? And does the knowledge we have about these things change our perception of ourselves and our position in the universe?With Professor Sir Martin Rees, Astronomer Royal and Royal Society Research Professor in Astronomy and Physics, Cambridge University; Professor Paul Davies, theoretical physicist and Visiting Professor at Imperial College, London.
May 20 1999
28 mins
Play

Rank #20: Chaos Theory

Podcast cover
Read more
Melvyn Bragg examines whether world is a fundamentally chaotic or orderly place. When Newton published his Principia Mathematica in 1687 his work was founded on one simple message: Nature has laws and we can find them. His explanation of the movements of the planets, and of gravity, was rooted in the principle that the universe functions like a machine and its patterns are predictable. Newton’s equations not only explained why night follows day but, importantly, predicted that night would continue to follow day for evermore. Three hundred years later Newton’s principles were thrown into question by a dread word that represented the antithesis of his vision of order: that word was Chaos. According to Chaos Theory, the world is far more complicated than was previously thought. Instead of the future of the universe being irredeemably fixed, we are, in fact, subject to the whims of random unpredictability. Tiny actions can change the world by setting off an infinite chain of reactions: famously, if a butterfly flaps its wings in Brazil - it could cause a tornado in Berlin. So what’s the answer? Is the universe chaotic or orderly? If it’s all so complicated, why does night still follow day? And what is going on in that most complex machine of all - the brain - to filter and construct our perception of the world? With Susan Greenfield, Senior Research Fellow, Lincoln College, Oxford University; David Papineau, Professor of the Philosophy of Science, Kings College, London; Neil Johnson,University Lecturer in Physics at Oxford University.
May 16 2002
42 mins
Play

Similar Podcasts