This series is host to episodes created by the Department of Computer Science, University of Oxford, one of the longest-established Computer Science departments in the country. The series reflects this department's world-class research and teaching by providing talks that encompass topics such as computational biology, quantum computing, computational linguistics, information systems, software verification, and software engineering.

Rank #1: Strachey Lecture - The Once and Future Turing .

Professor Andrew Hodges author of 'Alan Turing: The Enigma' talks about Turing's work and ideas from the definition of computability, the universal machine to the prospect of Artificial Intelligence. In 1951, Christopher Strachey began his career in computing. He did so as a colleague of Alan Turing, who had inspired him with a 'Utopian' prospectus for programming. By that time, Turing had already made far-reaching and futuristic innovations, from the definition of computability and the universal machine to the prospect of Artificial Intelligence. This talk will describe the origins and impacts of these ideas, and how wartime codebreaking allowed theory to turn into practice. After 1951, Turing was no less innovative, applying computational techniques to mathematical biology. His sudden death in 1954 meant the loss of most of this work, and its rediscovery in modern times has only added to Turing's iconic status as a scientific visionary seeing far beyond his short life.Andrew Hodges is the author of Alan Turing: The Enigma (1983), which inspired the 2014 film The Imitation Game.The Strachey Lectures are generously supported by OxFORD Asset Management.

Rank #2: Strachey Lecture - Quantum Supremacy .

Dr Scott Aaronson (MIT, UT Austin) gives the 2016 Strachey lecture. In the near future, it will likely become possible to perform special-purpose quantum computations that, while not immediately useful for anything, are plausibly hard to simulate using a classical computer. These "quantum supremacy experiments" would be a scientific milestone---decisively answering quantum computing skeptics, while casting doubt on one of the foundational tenets of computer science, the Extended Church-Turing Thesis. At the same time, these experiments also raise fascinating questions for computational complexity theorists: for example, on what grounds should we believe that a given quantum system really is hard to simulate classically?Does classical simulation become easier as a quantum system becomes noisier? and how do we verify the results of such an experiment? In this lecture, I'll discuss recent results and open problems about these questions, using three proposed "quantum supremacy experiments" as examples: BosonSampling, IQP / commuting Hamiltonians, and random quantum circuits. Based partly on joint work with Alex Arkhipov and with Lijie Chen.The Strachey Lectures are generously supported by OxFORD Asset Management.

See Podcast